Architecture for Object-
Oriented Programming
L anquages

Martin Schoeberl
Vienna University of Technology, Austria




Qutline

m OO Instructions In Java

= Amdahl’s law

m Execution time measurements
m Array access in HW

= Measurements

m Conclusion, future work




OO Instructions

m Complex

m Several machine instructions on
a RISC

= Microcode In a Java processor
= Dominate the execution time
= HW support can help




Java OO Instructions

m Object and array creation
m Method invocation

m Fleld access

m Array access




OO Instructions

= Need object (or class) reference
e Depends on runtime layout

e Compacting GC needs pointer
forwarding or indirection

= Null pointer check
m Array bounds check
m Constant pool access



Possible Optimizations

= Null pointer check w. MMU
e Not in all embedded processors

m Cache of array size
e Compiler or hardware

= Method inlining
e Undo for dynamic class loading

m Hardware implementation




Micro Benchmark

m Execution time of bytecode pairs

e Almost all bytecode manipulate
the stack

e Additional undo bytecode
m Loop with bytecodes under test
s Compensation loop
m Adapts till 1s measured




Micro Benchmark for 1aload

m Test loop: m Overhead loop:
public int test(int cnt) { public int ovh(int cnt) {
Inta = 0; Inta = 0;
Int i; Int i;
for (i=0; i<cnt; ++i) { for (1I=0; i<cnt; ++i) {
a += arr[i&0x3ff]; a += abc&Ox3ff;
} }
return a; return a;

} }



Bytecode for 1aload Test

= test loop: = overhead loop:
9: iload 2 9: iload 2
10: getstatic #2; 10: getstatic #3;
@ 13: sipush 1023
14: sipush 1023 16: iand
17. iland 17: iladd
18: istore_2
19: iadd

20: Istore 2




Bytecode Execution Time

Instruction JOP aldile100
lload iadd 2 8
If_icmplt taken 6 18
If_icmplt n/taken 6 14
getfield 22 23
getstatic 15 15
laload 36 13
Invokevirtual 138 115
Invokestatic 100 95

Invokeinterface 144 153




A Quantitative Approach

m First measure the possible speedup
= Amdahl’'s Law

told _ 1

S =
Thow 1 — f. +L
S

|
m Overall speedup s depends on
Individual speedup s; and fraction f;
used

e Rule of diminishing returns




CPU Performance Equation

m Instruction count IC
m Clocks per instruction CPI

.. =1CxCPI xt

clock

e Keep IC and t,, constant
e Just need CPI, and IC,

P > " IC,xCPI,
- IC




CPU Performance Equation

m Complete equation

e CPU pipeline stall cycles
= Depends on instruction stream

e Cache miss cycles
= Not easy 1o measure

> IC, xCPI,
CPI = &= +CPI_,, +CP!

stall miss




Indirect Approach

m Use Amdahl’'s Law
e Increase execution time
e Easy on FPGA architecture
e Calculate fraction
c_tug 1
o 10
S.

f S_(l_lj
1-5




Execution Time Fractions

Instruction fi
Invoke 23.8%
getfield 11.9%
putfield 1.1%
getstatic 7.4%
putstatic 1.8%
xaload 12.1%
xastore 9.0%
all 68.6%

m On JOP
e 4 KB | cache
e 512 B D cache
e 2 cycle mem.

m App.
benchmarks



Evaluation

= Implementation of array access

= On a Java processor - JOP
e FPGA implementation
e Small core — HW overhead counts
e 100 MHz at low-cost FPGA
e 200 MHz at high-perf./cost FPGA

m Possible also on RISC




Array Access Optimization

m Array access
e Check reference against null
e Check array bounds
e Read or write data

m Three memory accesses (JOP)
e Load pointer from handle

e Load array size
e Load/store the data




Original Implementation

= In microcode
=32+3r,,

=35+ 21, +W,,

aload

N

astore

= With 2 cycle memory
e xaload 35 cycles
e xastore 38 cycles




HW Implementation

= Memory access in HW
e Still 3 times

m Perform null check in parallel
e Load of handle does not hurt

= EA calculation parallel to size load
e Size iIs part of the handle

= Xaload in parallel to bounds check
e Wrong load does not hurt




Result

= In hardware
={+3r,,

=9+2r, +W,,

aload

N

astore

= With 2 cycle memory
e xaload 10 cycles
m Speedup 3.5

e Xastore 12 cycles
= Speedup 3.17




Implementation

= Change memory interface only
e Unchanged core pipeline

= Just a few more states and additional
microcode instruction

JOP Core PR - Memory Interface
BC Address |
Bytecode «2C D2t Bytecode “
Fetch — Cache
—

L
Data : Control

Fetch
...conel 1wl Extension
. Data
2 — -
Decods A Multiplier
—
—

ﬂ Data Control
v

Stack
L— I/O Interface
. nterupt




Benchmark Speedup / Area

1.3

1.251

1.2-

1.15-

1.1
1.051

0.95+
Kfl Udplp Lift geo. HW

Mean Size




Conclusion

= OO Instructions are complex
e Instruction frequency is high
e Execution time fraction is very high

= Some HW support can help

e Indirection for moving GC
e Null pointer check (MMU)
e Array bounds check

m Can help compiled Java on a RISC




Future Work

s HW support for invoke
e Complete in HW too expensive
e Find a good tradeoff
e Change of core pipeline

m Try the array HW on a RISC
e LEON (SPARC V8)
e MIPS

e Challenge: find a JIT or AOT that
supports it (CACAQO?, your JVM?)







	Architecture for Object-Oriented Programming Languages
	Outline
	OO Instructions
	Java OO Instructions
	OO Instructions
	Possible Optimizations
	Micro Benchmark
	Micro Benchmark for iaload
	Bytecode for iaload Test
	Bytecode Execution Time
	A Quantitative Approach
	CPU Performance Equation
	CPU Performance Equation
	Indirect Approach
	Execution Time Fractions
	Evaluation
	Array Access Optimization
	Original Implementation
	HW Implementation
	Result
	Implementation
	Benchmark Speedup / Area
	Conclusion
	Future Work
	Thank You

