
Architecture for ObjectArchitecture for Object--
Oriented Programming Oriented Programming

LanguagesLanguages
Martin SchoeberlMartin Schoeberl

Vienna University of Technology, AustriaVienna University of Technology, Austria

OutlineOutline

OO Instructions in JavaOO Instructions in Java
AmdahlAmdahl’’s laws law
Execution time measurementsExecution time measurements
Array access in HWArray access in HW
MeasurementsMeasurements
Conclusion, future workConclusion, future work

OO InstructionsOO Instructions

ComplexComplex
Several machine instructions on Several machine instructions on
a RISCa RISC
Microcode in a Java processorMicrocode in a Java processor
Dominate the execution timeDominate the execution time
HW support can helpHW support can help

Java OO InstructionsJava OO Instructions

Object and array creationObject and array creation
Method invocationMethod invocation
Field accessField access
Array accessArray access

OO InstructionsOO Instructions

Need object (or class) referenceNeed object (or class) reference
Depends on runtime layoutDepends on runtime layout
Compacting GC needs pointer Compacting GC needs pointer
forwarding or indirectionforwarding or indirection

Null pointer checkNull pointer check
Array bounds checkArray bounds check
Constant pool accessConstant pool access

Possible OptimizationsPossible Optimizations

Null pointer check w. MMUNull pointer check w. MMU
Not in all embedded processorsNot in all embedded processors

Cache of array sizeCache of array size
Compiler or hardwareCompiler or hardware

Method Method inlininginlining
Undo for dynamic class loadingUndo for dynamic class loading

Hardware implementationHardware implementation

Micro BenchmarkMicro Benchmark

Execution time of bytecode pairsExecution time of bytecode pairs
Almost all bytecode manipulate Almost all bytecode manipulate
the stackthe stack
Additional Additional undoundo bytecodebytecode

Loop with bytecodes under testLoop with bytecodes under test
Compensation loopCompensation loop
Adapts till 1s measuredAdapts till 1s measured

Micro Benchmark for Micro Benchmark for ialoadiaload

Test loop:Test loop:
public public intint test(inttest(int cntcnt) {) {

intint a = 0;a = 0;
intint i;i;

for (i=0; i<for (i=0; i<cntcnt; ++i) {; ++i) {
a += arr[i&0x3ff];a += arr[i&0x3ff];

}}
return a;return a;

}}

Overhead loop:Overhead loop:
public public intint ovh(intovh(int cntcnt) {) {

intint a = 0;a = 0;
intint i;i;

for (i=0; i<for (i=0; i<cntcnt; ++i) {; ++i) {
a += abc&0x3ff;a += abc&0x3ff;

}}
return a;return a;

}}

Bytecode for Bytecode for ialoadiaload TestTest

test loop:test loop:
9: iload_29: iload_2
10: 10: getstaticgetstatic #2;#2;
13: iload_313: iload_3
14: 14: sipushsipush 10231023
17: 17: iandiand
18: 18: ialoadiaload
19: 19: iaddiadd
20: istore_220: istore_2

overhead loop:overhead loop:
9: iload_29: iload_2
10: 10: getstaticgetstatic #3;#3;
13: 13: sipushsipush 10231023
16: 16: iandiand
17: 17: iaddiadd
18: istore_218: istore_2

Bytecode Execution TimeBytecode Execution Time

InstructionInstruction JOPJOP aJile100aJile100
iloadiload iaddiadd 22 88
if_icmpltif_icmplt takentaken 66 1818
if_icmpltif_icmplt n/takenn/taken 66 1414
getfieldgetfield 2222 2323
getstaticgetstatic 1515 1515
ialoadiaload 3636 1313
invokevirtualinvokevirtual 138138 115115
invokestaticinvokestatic 100100 9595
invokeinterfaceinvokeinterface 144144 153153

A Quantitative ApproachA Quantitative Approach

First measure the possible speedupFirst measure the possible speedup
AmdahlAmdahl’’s Laws Law

Overall speedup Overall speedup ss depends on depends on
individual speedup individual speedup ssii and fraction and fraction ffii
usedused

Rule of diminishing returnsRule of diminishing returns

1

1
old

inew
i

i

ts ft f
s

= =
− +

CPU Performance EquationCPU Performance Equation

Instruction count Instruction count ICIC
Clocks per instruction Clocks per instruction CPICPI

Keep Keep ICIC and and ttclockclock constantconstant
Just need Just need CPICPIii and and ICICii

exe clockt IC CPI t= × ×

1

n
i ii

IC CPI
CPI

IC
=

×
= ∑

CPU Performance EquationCPU Performance Equation

Complete equationComplete equation
CPU pipeline stall cyclesCPU pipeline stall cycles

Depends on instruction streamDepends on instruction stream

Cache miss cyclesCache miss cycles
Not easy to measureNot easy to measure

1

n
i ii

stall miss

IC CPI
CPI CPI CPI

IC
=

×
= + +∑

Indirect ApproachIndirect Approach

Use AmdahlUse Amdahl’’s Laws Law
Increase execution timeIncrease execution time
Easy on FPGA architectureEasy on FPGA architecture
Calculate fractionCalculate fraction

1

1
old

inew
i

i

ts ft f
s

= =
− +

1 1
1

i
i

i

sf
s s
⎛ ⎞= −⎜ ⎟− ⎝ ⎠

Execution Time FractionsExecution Time Fractions

On JOPOn JOP
4 KB I cache4 KB I cache
512 B D cache512 B D cache
2 cycle 2 cycle memmem..

App. App.
benchmarksbenchmarks

InstructionInstruction ffii

invokeinvoke 23.8%23.8%
getfieldgetfield 11.9%11.9%
putfieldputfield 1.1%1.1%
getstaticgetstatic 7.4%7.4%
putstaticputstatic 1.8%1.8%
xaloadxaload 12.1%12.1%
xastorexastore 9.0%9.0%
allall 68.6%68.6%

EvaluationEvaluation

Implementation of array accessImplementation of array access
On a Java processor On a Java processor -- JOPJOP

FPGA implementationFPGA implementation
Small core Small core –– HW overhead countsHW overhead counts
100 MHz at low100 MHz at low--cost FPGAcost FPGA
200 MHz at high200 MHz at high--perfperf./cost FPGA./cost FPGA

Possible also on RISCPossible also on RISC

Array Access OptimizationArray Access Optimization

Array accessArray access
Check reference against Check reference against nullnull
Check array boundsCheck array bounds
Read or write dataRead or write data

Three memory accesses (JOP)Three memory accesses (JOP)
Load pointer from handleLoad pointer from handle
Load array sizeLoad array size
Load/store the dataLoad/store the data

Original ImplementationOriginal Implementation

In microcodeIn microcode

With 2 cycle memoryWith 2 cycle memory
xaloadxaload 35 cycles35 cycles
xastorexastore 38 cycles38 cycles

32 3aload wsn r= +

35 2astore ws wsn r w= + +

HW ImplementationHW Implementation

Memory access in HWMemory access in HW
Still 3 timesStill 3 times

Perform null check in parallelPerform null check in parallel
Load of handle does not hurtLoad of handle does not hurt

EA calculation parallel to size loadEA calculation parallel to size load
Size is part of the handleSize is part of the handle

xaloadxaload in parallel to bounds checkin parallel to bounds check
Wrong load does not hurtWrong load does not hurt

ResultResult

In hardwareIn hardware

With 2 cycle memoryWith 2 cycle memory
xaloadxaload 10 cycles10 cycles

Speedup 3.5Speedup 3.5
xastorexastore 12 cycles12 cycles

Speedup 3.17Speedup 3.17

7 3aload wsn r= +

9 2astore ws wsn r w= + +

ImplementationImplementation

Change memory interface onlyChange memory interface only
Unchanged core pipelineUnchanged core pipeline

Just a few more states and additional Just a few more states and additional
microcode instructionmicrocode instruction

Benchmark Speedup / AreaBenchmark Speedup / Area

1.07

1.26

1.21
1.18

1.08

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Kfl UdpIp Lift geo.
Mean

HW
Size

ConclusionConclusion

OO instructions are complexOO instructions are complex
Instruction frequency is highInstruction frequency is high
Execution time fraction is very highExecution time fraction is very high

Some HW support can helpSome HW support can help
Indirection for moving GCIndirection for moving GC
Null pointer check (MMU)Null pointer check (MMU)
Array bounds checkArray bounds check

Can help compiled Java on a RISCCan help compiled Java on a RISC

Future WorkFuture Work

HW support for invokeHW support for invoke
Complete in HW too expensiveComplete in HW too expensive
Find a good tradeoffFind a good tradeoff
Change of core pipelineChange of core pipeline

Try the array HW on a RISCTry the array HW on a RISC
LEON (SPARC V8)LEON (SPARC V8)
MIPSMIPS
Challenge: find a JIT or AOT that Challenge: find a JIT or AOT that
supports it (CACAO?, your JVM?)supports it (CACAO?, your JVM?)

Thank YouThank You

Questions & SuggestionsQuestions & Suggestions

	Architecture for Object-Oriented Programming Languages
	Outline
	OO Instructions
	Java OO Instructions
	OO Instructions
	Possible Optimizations
	Micro Benchmark
	Micro Benchmark for iaload
	Bytecode for iaload Test
	Bytecode Execution Time
	A Quantitative Approach
	CPU Performance Equation
	CPU Performance Equation
	Indirect Approach
	Execution Time Fractions
	Evaluation
	Array Access Optimization
	Original Implementation
	HW Implementation
	Result
	Implementation
	Benchmark Speedup / Area
	Conclusion
	Future Work
	Thank You

